03-24-2005, 10:47 AM
Bon, j'ai fait les test statistiques... On dirait du Shaytan...
Mais, ne vous inquietez pas j'ai une solution...
Alors si je resume ce que l'on voudrait c'est que chaque combinaison tombe une et une seule fois.
et en principe on a un generateur (rand) a distribution homogene.
on va donc tirer le numero de la combinaison onf ait donc un
toto = rand (0, 215); //toto \in [0,215]
on considere maintenant que c'est un chiffre en base 6.
a*6^2+b*6^1+c
il reste a extraire a b et c
c =( toto%6) +1;//on rajoute un parceque notre de est sur [1,6]
toto = toto /6;
b = (toto % 6 ) +1;
toto = toto/6;
a = (toto % 6) +1;
Si la fonction rand fournit bien une distribution homogene.
alors on aura l'homogeneite dans la distribution des dés 6 et 666
En esperant que ca vous serve...
Mais, ne vous inquietez pas j'ai une solution...
Alors si je resume ce que l'on voudrait c'est que chaque combinaison tombe une et une seule fois.
et en principe on a un generateur (rand) a distribution homogene.
on va donc tirer le numero de la combinaison onf ait donc un
toto = rand (0, 215); //toto \in [0,215]
on considere maintenant que c'est un chiffre en base 6.
a*6^2+b*6^1+c
il reste a extraire a b et c
c =( toto%6) +1;//on rajoute un parceque notre de est sur [1,6]
toto = toto /6;
b = (toto % 6 ) +1;
toto = toto/6;
a = (toto % 6) +1;
Si la fonction rand fournit bien une distribution homogene.
alors on aura l'homogeneite dans la distribution des dés 6 et 666
En esperant que ca vous serve...